
HYPERDRIVE
IMPLEMENTATION AND ANALYSIS OF A

PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER

AVISHA DHISLE ADHISLE

PRERIT RODNEY PRODNEY

15618: PARALLEL COMPUTER ARCHITECTURE
PROF. BRYANT

PROF. KAYVON

LET’S BUILD A PARALLEL CONJUGATE GRADIENT SOLVER AND ANALYZE ITS PERFORMANCE

▪ Many real-world applications like flight simulators, fluid dynamics, circuit theory are represented by non-linear

system of equations, ordinary and partial differential equations.

▪ Discretization of above system of equations result in linear systems formulated as: Ax = b

▪ Solving of these discrete linear systems derived from large and complex real-world models using iterative methods

is an active area of research.

BOTTLENECKS THAT LEAD TO A SUB-OPTIMAL PERFORMANCE OF THE CG ALGORITHM

▪ Size of the matrices is often large Bandwidth bound

▪ Poorly conditioned matrix Higher divergence, slower convergence

▪ Matrix-vector product Computationally intensive O(N^3)

WHAT IS OUR PARALLEL CG SOLVER CAPABLE OF?

✓ Provides a sequential implementation of the Preconditioned Conjugate Gradient solver

✓ Includes a multithreaded implementation of the PCG solver using OpenMP primitives

✓ Presents a GPU implementation of the PCG solver using CUDA

✓ Demonstrates a considerable speedup in the convergence of the equation Ax = B for both parallel

implementations over the sequential implementation

INPUT AND OUTPUT CONSTRAINTS OF THE SYSTEM

INPUT

Matrix A must be-

✓symmetric

✓positive definite

✓banded

Matrix B must be-

✓a vector of size equal to the order of Matrix A

OUTPUT

✓Computed x vector by PCG algorithm

✓L2 norm of the residual vector must be lesser

than 10^-5 for convergence

VISUAL REPRESENTATIONS OF TEST MATRICES USED

BCSSTK14 BCSSTK15 BCSSTK18 S3RMT3M3 S3DKT3M2

Matrix size:

1806 x 1806

No. of non zero

elements:

63,454

Matrix size:

11948 x 11948

No. of non zero

elements:

149,090

Matrix size:

3948 x 3948

No. of non zero

elements:

117,816

Matrix size:

5357 x 5357

No. of non zero

elements:

207,695

Matrix size:

90449 x 90449

No. of non zero

elements:

3,753,461

LARGE, SPARSE MATRICES WERE STORED IN COMPRESSED ROW STORAGE FORMAT

• As size of the matrices increased, a decrease in performance was observed due to increased cache misses since the

full matrix was not fitting in the cache.

• Hence, store only non-zero elements of the matrices.

1 2 5 5 3 1 1 4

0 1 3 6

Value of non zero elements

Column index

Row pointers

0 1 2 1 2 3 2 3

1 0 0 0
0 2 5 0
0 5 3 1
0 0 1 4

• We obtained an reduction in memory storage of 99.907% for the 90449 x 90449 matrix!

16141

24165

29278

7057

97236

556 668 1993

8514

18414

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

BCSSTK14 BCSSTK15 BCSSTK18 S3RMT3M3 S3DKT3M2

Number of Iterations to converge

Without Preconditioning Preconditioned

JACOBI PRECONDITIONING TO REDUCE THE NUMBER OF ITERATIONS FOR CONVERGENCE

Preconditioning

reduces the

condition number of

the matrix

Helps put a bound

on the inaccuracy of

the solution X

All tests were

carried out on the

GHC machines

M-1Ax = M-1b

GHC Machines CPU Specs: Xeon E5-1660, 8 cores (2x hyperthreaded), 32GB DRAM

PROFILING OF SEQUENTIAL CODE TO DETERMINE FUNCTIONS THAT NEED PARALLELIZATION

GPU CG RESULTED IN A HIGHER SPEEDUP THAN THE OPENMP MULTITHREADED CG

1.99x

2.99x

4.14x 4.18x

5.23x

2.03x

3.49x

5.06x

7.58x

12.88x

0

2

4

6

8

10

12

14

BCSSTK14 BCSSTK15 BCSSTK18 S3RMT3M3 S3DKT3M2

Speed up with Threads and CUDA implementation

Speed up with open MP 16 threads Speedup with CUDA

~13 times

speedup!!

Launching

kernel

overhead

mitigated by

size of

matrix i.e.

computations

increased

All tests

were carried

out on the

GHC

machinesGHC Machines GPU Specs: GeForce GTX1080, 2560-cores, 8GB RAM

FINAL THOUGHTS

▪ Compressed Row storage format is a memory-efficient way of storing sparse matrices

▪ Jacobi preconditioner works with diagonally-dominant, sparse matrices and sub-optimally with matrices that do not

follow the banded structure

▪ Porting the computations to GPU is beneficial as the ratio of number of non-zero elements to the order of the

matrix greater than 40 and the number of non-zero elements are above 200,000.

• Beyond this number, the overhead of cudaMemcpy and kernel launch overhead is mitigated by the intensity of

computations.

THANK YOU! ☺

