HYPERDRIVE

IMPLEMENTATION AND ANALYSIS OF A

PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER

	AVISHA DHISLE	ADHISLE	
	PRERIT RODNEY	PRODNEY	
			PROF. BRYANT
15618: PARALLEL COMPUTE		PROF. KAYVON	

LET'S BUILD A PARALLEL CONJUGATE GRADIENT SOLVER AND ANALYZE ITS PERFORMANCE

- Many real-world applications like flight simulators, fluid dynamics, circuit theory are represented by non-linear system of equations, ordinary and partial differential equations.
- Discretization of above system of equations result in linear systems formulated as: Ax = b
- Solving of these discrete linear systems derived from large and complex real-world models using iterative methods is an active area of research.

BOTTLENECKS THAT LEAD TO A SUB-OPTIMAL PERFORMANCE OF THE CG ALGORITHM

- Size of the matrices is often large ----> Bandwidth bound
- Poorly conditioned matrix Higher divergence, slower convergence
- Matrix-vector product \longrightarrow Computationally intensive O(N^3)

WHAT IS OUR PARALLEL CG SOLVER CAPABLE OF?

- ✓ Provides a sequential implementation of the Preconditioned Conjugate Gradient solver
- ✓ Includes a multithreaded implementation of the PCG solver using OpenMP primitives
- ✓ Presents a GPU implementation of the PCG solver using CUDA
- ✓ Demonstrates a considerable speedup in the convergence of the equation Ax = B for both parallel implementations over the sequential implementation

INPUT AND OUTPUT CONSTRAINTS OF THE SYSTEM

VISUAL REPRESENTATIONS OF TEST MATRICES USED

LARGE, SPARSE MATRICES WERE STORED IN COMPRESSED ROW STORAGE FORMAT

- As size of the matrices increased, a decrease in performance was observed due to increased cache misses since the full matrix was not fitting in the cache.
- Hence, store only non-zero elements of the matrices.

• We obtained an reduction in memory storage of 99.907% for the 90449 x 90449 matrix!

JACOBI PRECONDITIONING TO REDUCE THE NUMBER OF ITERATIONS FOR CONVERGENCE

Number of Iterations to converge

GHC Machines CPU Specs: Xeon E5-1660, 8 cores (2x hyperthreaded), 32GB DRAM

PROFILING OF SEQUENTIAL CODE TO DETERMINE FUNCTIONS THAT NEED PARALLELIZATION

Conjugate Gradient Algorithm		granul	arity:	each sam	ple hit c	overs 2 byte(s) for 0.00% of 568.23 seconds
$r_0 = b - Ax_0$		index	% time	self	children	called	name
$z_0 = M^{-1}r_0$		[1]	100.0	0.04	568.19 0.00	36858/36858	<pre>main [1] mat_vec_prod(crs*, double*, double*, int, int) [2] mat_vec_prod(crs*, double*, double*, int, int) [2]</pre>
$p_0 = z_0$				16.45 12.59	0.00	55284/55284 36856/36856	<pre>scalar_vec_prod(double*, double, double*, int) [4] sum vec(double*, double*, double*, int) [5]</pre>
<u>j</u> = 0				12.34 10.80	0.00	36856/36856 36857/36857	<pre>diff_vec(double*, double*, double*, int) [6] vecdot(double*, double*, int) [7] norm(double*, int) [8]</pre>
repeat				0.00	0.00	186/186 186/186	<pre>std::common_type<std::chrono::duration<long, 11="" std::chrono::duration<double,="" std::ratio<1="" std::ratio<11,=""> >::durat</std::chrono::duration<long,></pre>
$\alpha_k = \frac{r_k^T z_k}{p_k^T A p_k}$	// Requires Vector dot product and Matrix vector product			0.00 0.00 0.00	0.00 0.00 0.00	186/372 2/2 1/1	<pre>std::chrono::duration<double, 11="" std::ratio<11,=""> >::count equate_vec(double*, double*, int) [25] get_w(double*, int) [28]</double,></pre>
$x_{k+1} = x_k + \alpha_k p_k$	// Requires scalar vector product and vector sum	[2]	83.2	472.84 472.84	0.00 0.00	36858/36858 36858	<pre>main [1] mat_vec_prod(crs*, double*, double*, int, int) [2]</pre>
$r_{k+1} = r_k - \alpha_k A p_k$ $z_{k+1} = M^{-1} r_{k+1}$	<pre>// Requires scalar vector product and vector difference // Requires Matrix vector product</pre>	[3]	6.7	37.94 37.94	0.00 0.00	1/1 1	main [1] read_sparse_matrix(char const*) [3]
$\beta_k = \frac{r_{k+1}^T z_{k+1}}{z^T z_k}$	// Requires vector dot product	[4]	2.9	16.45 16.45	0.00 0.00	55284/55284 55284	<pre>main [1] scalar_vec_prod(double*, double, double*, int) [4]</pre>
$p_{k+1} = z_{k+1} + \beta_k p_k$	// Requires scalar vector product and vector sum	[5]	2.2	12.59 12.59	0.00 0.00	36856/36856 36856	<pre>main [1] sum_vec(double*, double*, double*, int) [5]</pre>
k = k + 1		[6]	2.2	12.34 12.34	0.00 0.00	36856/36856 36856	<pre>main [1] diff_vec(double*, double*, double*, int) [6]</pre>
end repeat		[7]	1.9	10.80 10.80	0.00	36857/36857 36857	<pre>main [1] vecdot(double*, double*, int) [7]</pre>
Result is x_{k+1}		[8]	0.9	5.23 5.23	0.00	18616/18616 18616	<pre>main [1] norm(double*, int) [8] </pre>

GPU CG RESULTED IN A HIGHER SPEEDUP THAN THE OPENMP MULTITHREADED CG

Speed up with Threads and CUDA implementation

FINAL THOUGHTS

- Compressed Row storage format is a memory-efficient way of storing sparse matrices
- Jacobi preconditioner works with diagonally-dominant, sparse matrices and sub-optimally with matrices that do not follow the banded structure
- Porting the computations to GPU is beneficial as the ratio of number of non-zero elements to the order of the matrix greater than 40 and the number of non-zero elements are above 200,000.
 - Beyond this number, the overhead of cudaMemcpy and kernel launch overhead is mitigated by the intensity of computations.

