HYPERDRIVE

IMPLEMENTATION AND ANALYSIS OF A

PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER

AVISHA DHISLE ADHISLE

PRERIT RODNEY PRODNEY

PROF. BRYANT

15618: PARALLEL COMPUTER ARCHITECTURE
PROF. KAYVON

LET’S BUILD A PARALLEL CONJUGATE GRADIENT SOLVER AND ANALYZE ITS PERFORMANCE

= Many real-world applications like flight simulators, fluid dynamics, circuit theory are represented by non-linear

system of equations, ordinary and partial differential equations.

= Discretization of above system of equations result in linear systems formulated as: AX=D
= Solving of these discrete linear systems derived from large and complex real-world models using iterative methods

IS an active area of research.

BOTTLENECKS THAT LEAD TO A SUB-OPTIMAL PERFORMANCE OF THE CG ALGORITHM

= Size of the matrices is often large === Bandwidth bound
= Poorly conditioned matrix === Higher divergence, slower convergence

= Matrix-vector product == Computationally intensive O(N"3)

WHAT IS OUR PARALLEL CG SOLVER CAPABLE OF?

v" Provides a sequential implementation of the Preconditioned Conjugate Gradient solver
v" Includes a multithreaded implementation of the PCG solver using OpenMP primitives

v" Presents a GPU implementation of the PCG solver using CUDA

v' Demonstrates a considerable speedup in the convergence of the equation AX = B for both parallel

implementations over the sequential implementation

INPUT AND OUTPUT CONSTRAINTS OF THE SYSTEM

Matrix A must be-
v'symmetric
v positive definite

v'banded

INPUT <

Matrix B must be-

v“a vector of size equal to the order of Matrix A

Y4

v Computed x vector by PCG algorithm
OUTPUT < | v L2 norm of the residual vector must be lesser

than 10°-5 for convergence

BCSSTK14

Matrix size:
1806 x 1806

No. of non zero
elements:
63,454

BCSSTK15

Matrix size:
3948 x 3948

No. of non zero
elements:
117,816

BCSSTK18

Matrix size:
11948 x 11948

No. of non zero
elements:
149,090

S3RMT3M3

Matrix size:
5357 x 5357

No. of non zero
elements:
207,695

S3DKT3M2

Matrix size:
90449 x 90449

No. of non zero
elements:
3,753,461

LARGE, SPARSE MATRICES WERE STORED IN COMPRESSED ROW STORAGE FORMAT

» As size of the matrices increased, a decrease in performance was observed due to increased cache misses since the
full matrix was not fitting in the cache.

* Hence, store only non-zero elements of the matrices.

=W U1 O©
B= o O

==
couNn O

* We obtained an reduction in memory storage of 99.907% for the 90449 x 90449 matrix!

JACOBI PRECONDITIONING TO REDUCE THE NUMBER OF ITERATIONS FOR CONVERGENCE

Number of Iterations to converge

100000 97236 M -]_AX —_— M -]_b
H Without Preconditioning H Preconditioned

90000
Preconditioning
reduces the
condition number of
the matrix

80000
70000
60000

50000

Helps put a bound
on the inaccuracy of
the solution X

40000

29278
30000

24165
18414

20000 16141

. All tests were

668 1993 — i carried out on the

BCSSTK14 BCSSTK15 BCSSTK18 S3RMT3M3 S3DKT3M2 G H C maCh INes

10000 8514

556

0

GHC Machines CPU Specs: Xeon E5-1660, 8 cores (2x hyperthreaded), 32GB DRAM

PROFILING OF SEQUENTIAL CODE TO DETERMINE FUNCTIONS THAT NEED PARALLELIZATION

Conjugate Gradient Algorithm granularity: each sample hit covers 2 byte(s) for 0.00% of 568.23 seconds
_ index % time self children called name
m—b—Am
<spontaneous>
. [1] 100.0 0.04 568.19 main [1]
Z0=M"rp 472.84 0.00 36358/36858 mat vec prod(crs*, double*, double*, int, int) [Z2]
37.594 0.00 1/1 read_sparse_matrix(char const*) [3]
Po=1Io 16.45 0.00 55284/55284 scalar vec prod(double*, double, double*, int) [4]
12.59 0.00 36856/36856 sum vec (double*, double*, double*, int) [5]
. 12.34 0.00 36856/36856 diff vec(double*, double*, double*, int) [6]
1_0 10.80 0.00 36857/36857 wvecdot (double*, double*, int) [7]
5.23 0.00 lsele/186l6 norm(double*, int) [8]
repeat 0.00 0.00 186/186 std::common_type<std::chrono::duration<long, std::ratio<l
0.00 0.00 186/186 std::chrono: :duration<double, std::ratio<l1l, 11> >::durat
d}k .) 0.00 0.00 186/372 std::chrono: :duration<double, std::ratio<ll, 11> >::count
O =7 - // Requires Vector dot product and Matrix vector product 0.00 0.00 2/2 equate_vec (double*, double*, int) [25]
PraPk 0.00 0.00 1/1 get w(double*, int) [28]
Xpp1 = X + 0P /{ Requires scalar vector product and vector sum 472,584 0.00 36858/36858 main [1]
[2] 83.2 472.84 0.00 36658 mat vec prod(crs*, double*, double*, int, int) [2]
Tes1 = T — OQpApy // Requires scalar vector product and vector difference
37.94 0.00 1/1 main [1]
- . . 3 6.7 37.94 0.00 1 read sparse matrix(char const* 3
Zys1 = M4 // Requires Matrix vector product 3 ° _Sparse () B
T 16.45 0.00 55264/55264 main [1]
Ty qZ . " e n N R
Bk — k+%k+l ffRﬁquuesvednrdotprodud [4] 2.9 16.45 0.00 55284 scalar_vec_prod(double*, double, double*, int) [4]
ZkT'k
12.59 0.00 36856/36856 main [1]
Di+1 = Zk+1'+ kak fﬂRﬁquhesscabrvedorproductandvedbrmnn [5] 2.2 12.5% 0.00 36856 Sum_vec(double*, double*, double*, int) [5]
k=k+1 12.34 0.00 36856/36856 main [1]
=k+ [e] 2.2 12.34 0.00 3ggse diff vec(double*, double*, double*, int) [6]
end repeat 10.80 0.00 36857/36857 main [1]
[7] 1.9 10.80 0.00 36857 vecdot (double*, double*, int) [7]
Result is xj,, 4 _
5.23 0.00 18616/18616 main [1]

[8] 0.9 5.23 0.00 186le norm(double*, int) [8]

GPU CG RESULTED IN A HIGHER SPEEDUP THAN THE OPENMP MULTITHREADED CG

14

12

10

Speed up with Threads and CUDA implementation

H Speed up with open MP 16 threads H Speedup with CUDA

7.58x

5.06x

4.14x 4.18x

3.49x
2.99x

1.99x 2.03x

BCSSTK14 BCSSTK15 BCSSTK18 S3RMT3M3

GHC Machines GPU Specs: GeForce GTX1080, 2560-cores, 8GB RAM

12.88x

5.23x

S3DKT3M2

~13 times
speedup!!

Launching
kernel
overhead
mitigated by
size of
matrix i.e.
computations
increased

All tests
were carried
out on the
GHC
machines

FINAL THOUGHTS

= Compressed Row storage format is a memory-efficient way of storing sparse matrices
= Jacobi preconditioner works with diagonally-dominant, sparse matrices and sub-optimally with matrices that do not
follow the banded structure
= Porting the computations to GPU is beneficial as the ratio of number of non-zero elements to the order of the
matrix greater than 40 and the number of non-zero elements are above 200,000.
» Beyond this number, the overhead of cudaMemcpy and kernel launch overhead is mitigated by the intensity of

computations.

THANK YOU! ©

