HYPERDRIVE

IMPLEMENTATION AND ANALYSIS OF A
PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER
AVISHA DHISLE
ADHISLE
PRERIT RODNEY
PRODNEY

LET’S BUILD A PARALLEL CONJUGATE GRADIENT SOLVER AND ANALYZE ITS PERFORMANCE

- Many real-world applications like flight simulators, fluid dynamics, circuit theory are represented by non-linear system of equations, ordinary and partial differential equations.
- Discretization of above system of equations result in linear systems formulated as: $A x=b$
- Solving of these discrete linear systems derived from large and complex real-world models using iterative methods is an active area of research.

BOTTLENECKS THAT LEAD TO A SUB-OPTIMAL PERFORMANCE OF THE CG ALGORITHM

- Size of the matrices is often large \longrightarrow Bandwidth bound
- Poorly conditioned matrix \longrightarrow Higher divergence, slower convergence
- Matrix-vector product \longrightarrow Computationally intensive $\mathrm{O}\left(\mathrm{N}^{\wedge} 3\right)$

WHAT IS OUR PARALLEL CG SOLVER CAPABLE OF?

\checkmark Provides a sequential implementation of the Preconditioned Conjugate Gradient solver
\checkmark Includes a multithreaded implementation of the PCG solver using OpenMP primitives
\checkmark Presents a GPU implementation of the PCG solver using CUDA
\checkmark Demonstrates a considerable speedup in the convergence of the equation $A x=B$ for both parallel implementations over the sequential implementation

INPUT AND OUTPUT CONSTRAINTS OF THE SYSTEM

BCSSTK14

Matrix size: 1806 x 1806

No. of non zero elements: 63,454

BCSSTK15

Matrix size: 3948 x 3948

No. of non zero elements: 117,816

BCSSTK18

Matrix size: 11948×11948

No. of non zero elements: 149,090

S3RMT3M3

Matrix size: 5357 x 5357

No. of non zero elements: 207,695

S3DKT3M2

Matrix size: 90449 x 90449

No. of non zero elements: 3,753,461

LARGE, SPARSE MATRICES WERE STORED IN COMPRESSED ROW STORAGE FORMAT

- As size of the matrices increased, a decrease in performance was observed due to increased cache misses since the full matrix was not fitting in the cache.
- Hence, store only non-zero elements of the matrices.

Value of non zero elements	1	2	5	5	3	1	1	4	$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 2 & 5 & 0\end{array}\right]$
Column index	0	1	2	1	2	3	2		$\left[\begin{array}{llll}0 & 5 & 3 & 1 \\ 0 & 0 & 1 & 4\end{array}\right.$
	0	1	2	1	2	3	2	3	$\left[\begin{array}{llll}0 & 0 & 1 & 4\end{array}\right]$
Row pointers	0	1	3	6					

- We obtained an reduction in memory storage of 99.907% for the 90449×90449 matrix!

JACOBI PRECONDITIONING TO REDUCE THE NUMBER OF ITERATIONS FOR CONVERGENCE

GHC Machines CPU Specs: Xeon E5-1660, 8 cores (2x hyperthreaded), 32GB DRAM

PROFILING OF SEQUENTIAL CODE TO DETERMINE FUNCTIONS THAT NEED PARALLELIZATION

Conjugate Gradient Algorithm
$r_{0}=b-A x_{0}$
$\mathrm{z}_{0}=\mathrm{M}^{-1} \mathrm{r}_{0}$
$p_{0}=z_{0}$
$\mathrm{i}=0$
repeat
$\alpha_{k}=\frac{r_{k}^{T} z_{k}}{p_{k}^{T} A p_{k}}$
$x_{k+1}=x_{k}+\alpha_{k} p_{k}$
$r_{k+1}=r_{k}-\alpha_{k} A p_{k}$
$z_{k+1}=M^{-1} r_{k+1}$
$\beta_{k}=\frac{r_{k+1}^{T} z_{k+1}}{z_{k}^{T} r_{k}}$
$p_{k+1}=z_{k+1}+\beta_{k} p_{k}$
$k=k+1$
end repeat
Result is x_{k+1}
granularity: each sample hit covers 2 byte(s) for 0.00% of 568.23 seconds

GPU CG RESULTED IN A HIGHER SPEEDUP THAN THE OPENMP MULTITHREADED CG

Speed up with Threads and CUDA implementation

FINAL THOUGHTS

- Compressed Row storage format is a memory-efficient way of storing sparse matrices
- Jacobi preconditioner works with diagonally-dominant, sparse matrices and sub-optimally with matrices that do not follow the banded structure
- Porting the computations to GPU is beneficial as the ratio of number of non-zero elements to the order of the matrix greater than 40 and the number of non-zero elements are above 200,000.
- Beyond this number, the overhead of cudaMemcpy and kernel launch overhead is mitigated by the intensity of computations.

THANK YOU! ©

