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LET’S BUILD A PARALLEL CONJUGATE GRADIENT SOLVER AND ANALYZE ITS PERFORMANCE

▪ Many real-world applications like flight simulators, fluid dynamics, circuit theory are represented by non-linear 

system of equations, ordinary and partial differential equations.

▪ Discretization of above system of equations result in linear systems formulated as: Ax = b

▪ Solving of these discrete linear systems derived from large and complex real-world models using iterative methods 

is an active area of research.



BOTTLENECKS THAT LEAD TO A SUB-OPTIMAL PERFORMANCE OF THE CG ALGORITHM

▪ Size of the matrices is often large             Bandwidth bound

▪ Poorly conditioned matrix             Higher divergence, slower convergence

▪ Matrix-vector product              Computationally intensive O(N^3)



WHAT IS OUR PARALLEL CG SOLVER CAPABLE OF?

✓ Provides a sequential implementation of the Preconditioned Conjugate Gradient solver

✓ Includes a multithreaded implementation of the PCG solver using OpenMP primitives

✓ Presents a GPU implementation of the PCG solver using CUDA

✓ Demonstrates a considerable speedup in the convergence of the equation Ax = B for both parallel 

implementations over the sequential implementation 



INPUT AND OUTPUT CONSTRAINTS OF THE SYSTEM

INPUT

Matrix A must be-

✓symmetric

✓positive definite

✓banded

Matrix B must be-

✓a vector of size equal to the order of Matrix A

OUTPUT

✓Computed x vector by PCG algorithm

✓L2 norm of the residual vector must be lesser 

than 10^-5 for convergence



VISUAL REPRESENTATIONS OF TEST MATRICES USED

BCSSTK14 BCSSTK15 BCSSTK18 S3RMT3M3 S3DKT3M2

Matrix size:

1806 x 1806

No. of non zero 

elements:

63,454

Matrix size:

11948 x 11948

No. of non zero 

elements:

149,090

Matrix size:

3948 x 3948

No. of non zero 

elements:

117,816

Matrix size:

5357 x 5357

No. of non zero 

elements:

207,695

Matrix size:

90449 x 90449

No. of non zero 

elements:

3,753,461



LARGE, SPARSE MATRICES WERE STORED IN COMPRESSED ROW STORAGE FORMAT

• As size of the matrices increased, a decrease in performance was observed due to increased cache misses since the

full matrix was not fitting in the cache.

• Hence, store only non-zero elements of the matrices.

1 2 5 5 3 1 1 4

0 1 3 6

Value of non zero elements

Column index

Row pointers

0 1 2 1 2 3 2 3

1 0 0 0
0 2 5 0
0 5 3 1
0 0 1 4

• We obtained an reduction in memory storage of 99.907% for the 90449 x 90449 matrix!
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Number of Iterations to converge

Without Preconditioning Preconditioned

JACOBI PRECONDITIONING TO REDUCE THE NUMBER OF ITERATIONS FOR CONVERGENCE

Preconditioning 

reduces the 

condition number of 

the matrix

Helps put a bound

on the inaccuracy of

the solution X

All tests were

carried out on the

GHC machines

M-1Ax = M-1b

GHC Machines CPU Specs: Xeon E5-1660, 8 cores (2x hyperthreaded), 32GB DRAM



PROFILING OF SEQUENTIAL CODE TO DETERMINE FUNCTIONS THAT NEED PARALLELIZATION



GPU CG RESULTED IN A HIGHER SPEEDUP THAN THE OPENMP MULTITHREADED CG
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Speed up with Threads and CUDA implementation

Speed up with open MP 16 threads Speedup with CUDA

~13 times 

speedup!!

Launching 

kernel 

overhead 

mitigated by 

size of 

matrix i.e. 

computations 

increased

All tests 

were carried 

out on the 

GHC 

machinesGHC Machines GPU Specs: GeForce GTX1080, 2560-cores, 8GB RAM



FINAL THOUGHTS

▪ Compressed Row storage format is a memory-efficient way of storing sparse matrices

▪ Jacobi preconditioner works with diagonally-dominant, sparse matrices and sub-optimally with matrices that do not 

follow the banded structure

▪ Porting the computations to GPU is beneficial as the ratio of number of non-zero elements to the order of the 

matrix greater than 40 and the number of non-zero elements are above 200,000.

• Beyond this number, the overhead of cudaMemcpy and kernel launch overhead is mitigated by the intensity of 

computations.



THANK YOU! ☺


